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Abstract—Pain is an unpleasant sensory and distressing feeling
usually induced by physical damages, and the intensity is further
modulated by the experienced pain site. Objective assessment of
pain is critical in a variety of clinical practices, however, the status
quo in medical practices is based solely on self-report. Recent
advancements have been observed in automatic assessment of
pain using audio-video recordings, but most do not consider the
complex clinical dependency between pain level and pain site. In
this study, we propose a Task Specific Encoder with Soft Layer
Ordering structure (TSEN-SLO) that utilizes a learnable tensor
to flexibly share information between pain level and pain site
while still keeping the representations of each task in their self-
encoding layers to improve pain level recognition. Our network
learns from both face and voice data and achieves accuracy of
70% and 48.1% in a binary and ternary self-report pain level
classification in a challenging in-the-wild setting. The approach
improves a relative of 6.5% and 9.1% compare to previous work
on the same dataset. Further analysis also demonstrates the
variation in the self-reported pain level as observed in the facial
and acoustic features for different pain sites, which points toward
a potential relationship between the neural-mechanism behind
internal pain sensation and its effect on expressive facial/vocal
behaviors.

Index Terms—Behavioral Signal Processing (BSP), multi-task
learning, triage, pain level, pain site

I. INTRODUCTION

Pain is an extremely prevalent yet complicated symptom [1].
Being an internal yet clinically-relevant sensation, research in
the perception of pain [2] and its objective assessment [3],
[4] has long been an important research direction. In most
cases, the level of pain felt depends not only on the amount of
bodily damage but also on one’s previous experiences [2]. Pain
site, on the other hand, has also been studied to understand
the impact of the physicality in pain. In similar pathological
processes, different pain locations may lead to different pain
experiences. The sensation of pain could be induced by tissues

(somatic pain), viscera (visceral pain), nervous systems (neu-
ropathic pain) or even the over-sensitization of the peripheral
system (maladaptive pain). These variabilities in pain presents
their differences not only in the psychophysics of the sensation
but also in neurobiological mechanisms [5], and the relation
of pain site with different neural responses have also been
extensively studied [6], [7].

Being an important clinical marker, obtaining reliable pain
level assessment has played a critical role in the diagnosis
and evaluation process across medical applications. Several
engineering works have investigated an automated approach to
assess the pain level to mitigate issues of the current clinical
use of self-report pain scales. For example, Kaltwang et al.
quantify patient’s facial expressions in order to differentiate
between pain and no pain [8], Ashraf et al. utilize the active
appearance model to recognize frame-level pain [9], and other
researchers also detect pain by modeling body gestures [10],
[11]. Recently, a series of studies also show that speech
modality also possesses substantial information for objective
assessment of pain [12], [13].

Previous research has shown that the location of pain
may further enhance the pain sensation for patients with
both chronic and acute pain [14]. Nevertheless, none of the
automated recognition frameworks has considered the complex
relationship between pain site and pain level although both
information is often collected together for clinical decisions.
In our work, we propose a multi-task network of a soft
layer ordering structure combined with task specific encoder
(TSEN-SLO), where the latent relationship between pain level
and pain site is captured through a learnable tensor while
each task still retains specific information in the self-encoding
branch. We evaluate our framework on a large-scale audio-
video corpus collected during real in-hospital emergency room
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Fig. 1. The complete architecture of our proposed Task Specific Encoder with Soft Layer Ordering (TSEN-SLO) in automatic pain level recognition: extracted
acoustic and facial low-level descriptors, session level encoding using Gaussian mixture model based Fisher Vector (GMM FV), training the soft layer ordering
network with pain site as an auxiliary task and pain level as the main task.

Fig. 2. The data distribution of pain level with different pain sites

triage sessions [15]. Our proposed TSEN-SLO achieves 70%
in binary pain level classification (severe vs. mild), 48.1%
in a ternary pain level classification (mild, moderate, severe)
using face and voice features. We further conduct statistical
testing reveals that 1) facial expressions demonstrate differ-
ences between severe and mild pain level especially when
patients suffer from somatic pain, 2) spectral related features,
especially the RASTA style auditory spectrum on the higher
mel-frequency bands, display higher mean value in severe
pain, and 3) voicing related acoustic features (jitter, shimmer)
shows a deduction in values from mild to severe pain for
patients suffered from headache.

II. RESEARCH METHODOLOGY

A. The Triage Audio-Video Pain Database

We utilize the triage pain level database in this work [15]. It
was collected at the Department of Emergency at Chang Gung

TABLE I
The list of extracted facial features modified from [15] are shown below.

The number in the parenthesis corresponds to the number of descriptors (25
facial features per frame in total).

Facial action unit
inspired descriptors Descriptions

Frown (1) The distance between brow

Eyebrow var. (4) The distance between
brow/eyebrow tail and eye

Squint eyes (4) The distance between upper/lower
eyelid and center of eyes height

Eyes opening (2) The distance between
upper/lower eyelid

Eyes var. (1) The distance between
inner eyes

Mouth var. (2) The height/width
of mouth

Cheek var. (2) The distance between
eye and corners of the lips

Upper/Lower lip var. (2) The distance between
upper/lower lip and eyes center

Mouth aspect ratio (1) The distance of mouth opening
Eyes aspect ratio (2) The distance of eyes opening
Philtrum var. (1) The length of noise to philtrum
Nasolabial var. (1) The width of nasolabial

Head ratation (2) The degree of rotation
between y-axis and z-axis

Memorial Hospital, which included audio-video recordings
(with manual utterance segmentation), physiological (heart
rate, systolic and diastolic blood pressure) data, and other
clinically-related outcomes of on-boarding emergency patients
during real triage session. Triage nurses recorded each pa-
tient’s location of pain (pain site) and NRS of pain level, which
is the current clinical practice in quantifying pain level on a
10-point self-report scale [16].

In this work, we use a total of 323 samples (184 unique pa-
tients) in the database. It is the same setting as the most recent
automatic pain level recognition work on this corpus [13]. The
pain level score is categorized into three commonly-used pain
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levels, which are mild: 0-3, moderate: 4-6 and severe: 7-10.
The pain site is originally categorized into six categories (head,
chest, abdomen, back, limb, and others), and considering the
different neural-mechanism behind internal pain sensation we
further group pain site into two categories: abdomen pain and
non-abdomen pain. A plot on the distribution between pain
site and pain level is shown in Fig. 2.

B. Pain Level Recognition Framework

Fig. 1. depicts our complete proposed framework of soft
layer ordering with task-specific network (TSEN-SLO) for au-
tomatic pain level recognition using audio and video features.
It models vocal and facial behaviors and further models the
latent relationship between pain level (main task) and pain site
(auxiliary task). In the following, we will detail the acoustic
and facial feature extraction, session level feature encoding,
and finally our proposed recognition architecture.

1) Acoustic Features: The acoustic feature set used here
is originally developed for interspeech computational paralin-
guistics challenge [18]. We extract a variety of acoustic low-
level (frame-level) descriptors (LLD) with extensive statistical
functions to compute an utterance-level feature vector using
the openSMILE toolkit [17]. Specifically, it contains 6373
acoustic features per utterance covering different aspect in
speech: prosodic, spectral, cepstral and voice quality.

2) Facial Features: Facial action unit features have been
demonstrated to be related to pain [19], e.g., AU4, 6, 7, 9, 10,
12, 16, 25, 43. In this work, we follow from previous work in
designing 25 facial action unit-inspired low-level descriptors
per frame (a modification from [15]). These features charac-
terize eyes, mouth, eyebrows, and nose movements based on
the automatically tracked 68 facial landmarks extracted using
methods of constrained local neural fields (CLNF) [20]. The
details of the 25 features are listed in TABLE I.

3) Session-level Behavior Encoding: Each triage session
consists of different lengths of sequences in the extracted audio
and video features. We further perform session-level encod-
ing to obtain a fixed-dimensional vectorized representation
for each patient at each triage. The session-level encoding
that is utilized is based on a method of Gaussian Mixture
Model Fisher Vector encoding (GMM-FV) [21]. This particu-
lar method has shown its modeling power for tasks of speech
paralinguistics recognition [22]. A brief description is below.

Assume our input, X (the behavior features we have ex-
tracted), can be modeled using a probability density function
p with parameters λ. Here we choose p as a Gaussian Mixture
Model (GMM), which denotes as p(x) =

∑K
i=1 wi ∗ pi(x),

and λ = {wi, µi, σi, i = 1...K} where K is the number of
mixtures, wi, µi and σi are the mixture weight (priors), mean
vector and diagonal covariances of Gaussian i, respectively.
This leads to the Fisher vector encoding by computing the
first and second order differentiation between a feature input
to each center within the GMM:
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where N is the feature dimension, xd stands for the dth

dimension of input X and αd(k) defined as :

αd(k) =
wipi(xd)∑K

j=1 wj ∗ pj(xd)
(3)

The encoded fisher vector (FV), φ, can then be obtained by
stacking the Φk: φ = [Φ

(1)
1 ,Φ

(2)
1 , ...,Φ

(1)
k ,Φ

(2)
k ]. This serves

as our input to the TSEN-SLO network.
4) Task Specific Encoder with Soft Layer Ordering (TSEN-

SLO): We propose a TSEN-SLO network architecture that
models the latent relationship between pain level and pain site.
The structure is mainly a soft layer ordering multitask structure
in learning to assemble a set of shared layers with weights
modified using learnable tensors for different tasks [23]. We
apply a similar two-branch network for our tasks, i.e., pain
level and pain site, by designing a core network with two
learned affine layers, W1,W2 : Rm → Rm, that are shared
across the two tasks. Based on the soft layer ordering, we
define the equations for the two tasks as follows:

yk1 =

D∑
j=1

S(1,j,k)(φ[Wj(y
k−1
1 )]) (4)

yk2 =

D∑
j=1

S(2,j,k)(φ[Wj(y
k−1
2 )]) (5)

where φ = ReLU , D equals to two in this experiment, and
each element of S(ti,j,k) is drawn from a learnable tensor, S,
to derive a scalar at depth k that modifies layer Wj for task
ti:

D∑
j=1

S(ti,j,k) = 1 ∀(ti, k), ti = 1, 2 (6)

We further introduce a novel use of an additional task-specific
branch to help the model adapt the learned shared information
to each task more precisely. Depth of k therefore extend from
range [0,1] to [0,2]. We can then rewrite the original equation
(4) and (5) as follows:
yti = S(ti,2,2) · φ(Fti(y

0
ti))

+S(ti,1,2) ·(
2∑

j=1

S(ti,j,0)(φ(y0ti))+
2∑

j=1

S(ti,j,1)(φ[Wj(y
0
ti)]))

where y0ti is defined as output before the core shareable
portion of the network, and Fti is the task-specific affine
layers: Rm → Rm. The tensor S is learned jointly during
backpropagation. The network essentially learns a scalar-
modified weights drawn from a depth-dependent tensor dic-
tating how these two shared task-layers are assembled. Fur-
ther, with the use of additional task-specific encoding layers
for each task separately, the TSEN-SLO provides flexibility
in extracting both shared yet task-specific representation. In
summary, TSEN-SLO uses a learnable tensor that is jointly
optimized within the shared task layers that combines with
task-specific branch to further improve the adaptability for
enhanced modeling power.

286



TABLE II
It summarizes the detailed results of the baseline and the multitask recognition result, where PL indicates Pain-Level and PS indicates Pain-Site. We include

VAE, STL, Hard-S, Soft-S, SLO approaches as our comparison methods. The number with bold means the best result in our experiment.

VAE STL Hard-S Soft-S SLO TSEN-SLO
Vocal Vocal Facial Vocal+Facial Vocal+Facial

PL: 2-Class PS = 2 PS = 6 PS = 2 PS = 6 PS = 2 PS = 6 PS = 2 PS = 6
Mild 66.0 63.0 58.5 64.0 69.0 65.0 68.0 68.0 72.0 69.0 76.0 73.0

Severe 61.0 63.0 58.0 63.0 63.0 62.0 63.0 60.0 58.0 62.0 64.0 61.0
UAR 63.5 63.0 58.5 63.5 66.0 63.5 65.5 64.0 65.0 65.5 70.0 68.0

PL: 3-Class
Mild 43.7 42.0 43.0 46.0 45.0 46.0 49.0 51.0 46.0 46.0 50.0 52.0

Moderate 35.4 42.2 41.5 43.1 45.5 46.3 41.4 42.3 48.0 48.8 49.5 45.5
Severe 38.1 36.0 39.0 43.0 39.0 40.0 41.0 43.0 48.0 41.0 45.0 41.0
UAR 39.1 40.0 41.2 44.0 43.1 44.1 43.8 45.4 45.7 45.3 48.1 46.2

III. EXPERIMENTAL SETUP AND RESULTS

A. Experimental Setup

In this work, we present recognition results both in pain
level (binary and ternary) by using the auxiliary task of
pain site (binary and six classes). All evaluation is done via
leave-one-patient-out cross-validation using the unweighted
average recall (UAR) as the performance metric. Our TSEN-
SLO structure is composed of four hidden layers and three-
dimensional tensor variables. All variables are initialized with
uniform distribution, and the ReLU activation function is
applied. The hyperparameters list: 20 for batch size, 0.001
for learning rate, Adam optimizer, and 20 epochs. We perform
univariate ANOVA feature selection for each modality of each
task (pain level and pain site) separately before performing
GMM FV to reduce the dimension of the encoded session level
representations. Both encoded acoustic and video features are
concatenated as input to the proposed TSEN-SLO. We further
compare our proposed method with the following models:

• VAE [13]: Variational learning with Maximum-Mean
Discrepancy criterion training on the acoustic LLDs.

• STL: Single task learning for pain level recognition.
• Hard-S: Hard parameter sharing, hidden layers for the

two tasks are shared, and branch out at the output layer
for task-specific recognition.

• Soft-S: Soft parameter sharing, each task has its param-
eters in the hidden layers and is learned through joint
optimization for both tasks.

• SLO: Soft layer ordering, proposed by [23].
• TSEN-SLO: Our proposed method.

Note that, the Hard-S and Soft-S are the two standard multi-
task learning structures [24].

B. Experimental Results

TABLE II summarizes our pain level recognition results as a
function on the different number of pain sites used as an auxil-
iary task. Our proposed TSEN-SLO achieves the best accuracy
of 70% and 48.1% in 2-class and 3-class classification on pain
level. i.e. a gain of 6.5%, 4.1% on pain level in 2-class and 3-
class, respectively compared to multimodal STL (vocal+facial
single task learning). This result also surpasses the most recent
work on the same dataset that applies a variational learning

approach in the speech modality [13] by 6.5% and 9.1% in
2-class and 3-class recognition results.

There are several notable observations to be made. First, in
general, we observe that the fusion of vocal/facial modalities
provides improvement in the pain level assessment. Second,
we see that even with simple multi-task learning structure,
i.e., both Hard-S and Soft-S structures, would improve recog-
nition rates compared to single-task learning indicating there
indeed exists complementary latent relationship between pain
level and pain site as manifested in the patient’s vocal/facial
behaviors.

Third, the SLO structure result shows the power in flexibly
learn the shared representation between the two tasks to
improve main tasks recognition rates compared to Hard-S
and Soft-S. Finally, SLO combining with the additional use
of task-specific layer (i.e., our proposed TSEN-SLO) adds
additional modeling power, which increases 5% and 2.4%
compared to SLO on 2-class and 3-class pain level recognition.
In summary, our proposed TSEN-SLO flexibly learns the
shared information and provides additional modeling power
that makes the network capacity to be adaptive to each task
simultaneously. In a real-world multi-task problem, where
the relationship between the tasks (e.g., pain level and pain
site) can be extremely complicated, learning how the common
representation layers should be shared in different depths for
different tasks with an extra task-specific branch to handle
specificity in each task is beneficial in the overall recognition
tasks.

IV. ANALYSIS OF BEHAVIOR DIFFERENCES BETWEEN
PAIN LEVEL ACROSS PAIN SITE

In this section, we further analyze the differences of each
behavior modality across pain levels under each pain site
condition. We first compute five statistic functions (mean, max,
min, standard deviation) on each patient’s utterance. Then,
a two-sided Student’s t-test is performed between pain level
groups (severe vs. mild) with 0.05 significant level as cutoff
under each condition of pain site. The statistical testing result
is summarized in TABLE III.

A. Analysis on Facial Expressions

The significant differences between severe and mild pain
level are observed in abdomen, limb, and others pain sites for
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TABLE III
A table summarize the two-sided Student’s t-tests. The listed features are significantly different between groups of pain level : severe pain versus mild pain.

All of the listed descriptors below obtain p-value less than .05

FACIAL EXPRESSIONS ACOUSTIC EXPRESSIONS
Severe > Mild Severe < Mild Severe > Mild Severe < Mild

Abdomen Pain Site Head Pain Site
Head Rotation 2nd-(min) Squint eyes 2nd-(min) RAS.audSpec-bands 24th-(std,max) jitterLocal-(mean)

Limb Pain Site RAS.audSpec-bands 23th-(max) jitterDDP-(mean)
Upper/Lower lip Var. 1st-(std) – RAS.audSpec-bands 25th-(max) shimmerLocal-(mean)

Philtrum Var.-(std) – – RAS.audSpec-bands 6th,7th,12th,13th-(mean)
Others Pain Site – RAS.audSpec-bands 12th,13th-(std)

Head Rotation 2nd-(mean) Eyebrow Var. 1st,2nd,3rd-(std) – mfcc 5th-(std)
– Mouth Var. 2nd-(std) Abdomen Pain Site
– Cheek Var. 1st,2nd-(std) voicingFinalUnclipped-(std) mfcc 11th-(max)
– Upper/Lower lip Var. 1st-(std) Limb Pain Site
– Nasolabial Var.-(std) RAS.audSpec-bands 10th-(std) –
– Eyebrow Var. 1st-(max) Back Pain Site
– Philtrum Var.-(max) – voicingFinalUnclipped-(min)
– Nasolabial Var.-(max)

Var. stand for variation; detail explained in TABLE I

jitter/shimmerLocal stands for the average absolute difference between two consecutive periods

(the former measures the acoustic periods and the latter on the amplitudes of the fundamental frequency.);

jitterDDP stands for the average absolute difference between jitter cycles; RAS.audSpec stands for RASTA style auditory spectrum;

VoicingFinalUnclipped stands for the voicing probability of the final fundamental frequency candidate with no zero-clipping when falls below a voicing threshold.

facial expressions. Among six different pain sites, patients re-
porting on the neck, right/left shoulder and lower quadrant are
categorized as ‘others’ pain site; this type of pain is clinically
considered as the somatic pain [25] which highly relates to
muscle and joint problems [26]. Our result reveals a significant
difference for seven kinds of facial expression measures in
the ’others’ pain site condition; the seven types of video
features include head rotation, eyebrow variation, mouth vari-
ation, cheek variation, upper/lower lip variation, nasolabial
variation and philtrum variation. Since the sensation of pain
could predominantly affect the muscles and their association
has long been developed [27], it is intuitively pleasing to
see most muscular expression on face showing differences
between different levels of pain reported, especially under the
‘others’ pain site condition. Abdomen pain, in contrast, is more
likely to be caused by visceral organ pathology [28], where
only two facial expressions (head rotation, squint eyes) display
the significant difference between pain level groups.

B. Analysis on Vocal Characteristics

TABLE III shows statistically significant difference for five
acoustic measures in the ‘head’ pain site condition, which are
RASTA-style auditory spectrum, jitterLocal, jitterDDP, shim-
merLocal and mfcc. RASTA-style auditory spectrum bands
1-26 indicates the raw values per band of RASTA filtered
auditory band levels 1, the intuitive finding shows that auditory
spectrum applied to higher frequency (RASTA-style auditory
spectrum bands 23th,24th,25th) display higher mean in severe
pain compare to mild pain. On the other hand, lower frequency

1RASTA style bandpass filter applied to Mel-frequency bands (0-8kHz)

(RASTA-style auditory spectrum bands 6th,7th,12th,13th) shows
a lower mean in severe pain.

Another surprising observation is found that voicing re-
lated acoustic features (jitterLocal, jitterDDP, shimmerLocal)
demonstrate a reduction in value from mild to severe pain
(i.e. pathological-related jitter and shimmer values are less in
severe pain than in mild pain). In other words, when patients
suffer from symptoms of headache, the variation on the funda-
mental frequency and energy for phonation (both results from
the physical muscular adjustments of the larynx) are negatively
correlated to the pain intensity; while none of any other
pain site (except head pain site) shows mean differences of
these voicing related parameters. This intriguing result implies
that patients with nociceptive pain that is transmitted from
different pathway may likely to cause the patient’s acoustic
characteristics to alter in a non-intuitive manner.

C. Discussions

Both vocal and facial expressions provide critical windows
in reflecting the internal sensation of pain for patients. In
this study, we demonstrate that measures of facial expressions
show a clear distinction between painful and non-painful sce-
narios, and so as in acoustic manifestation. While pain site and
pain level both serve as important clinical variables in medical
practices, little effort has been made to systematically under-
stand and model the dependency between these two factors
and understand how they impact behavior manifestations. In
this work, we observe that when patients suffer from somatic
pain, facial expressions of head rotation, eyebrow variation,
mouth variation, cheek variation, upper/lower lip variation,
nasolabial variation and philtrum variation display significant

288



differences between severe and mild pain. Spectral related
acoustic features show differences when patients experiencing
pain sites of head, abdomen, and limb, while voicing related
features demonstrate differences between pain level when
reporting pain in the head. In other words, as patients suffer
from different regions of pain, different variability of facial
and acoustic behaviors could imply a different level of pain
intensity. This particular subtly dependency between pain site
and pain levels can also be leveraged in improving automatic
pain level assessment as demonstrated in using our proposed
TSEN-SLO framework.

V. CONCLUSIONS AND FUTURE WORKS

In many medical applications, knowing pain site and pain
level are both critical to the evaluation of treatment. This
work presents an modeling on the latent relationship between
the two factors in a real clinical setting of emergency triage
database. By proposing a task-specific encoding layer com-
bined with soft layer ordering (TSEN-SLO) structure, we
achieve 70% and 48.1% on automatic 2-class, 3-class pain-
level recognition. We demonstrate that facial expressions show
differences between severe vs. mild pain especially when pa-
tients are suffering from somatic pain, and surprisingly we ob-
serve that a counter-intuitive result where patients display the
higher value of pathology-related voice quality measures (i.e.,
jitter and shimmer) for mild pain condition during headache.
To the best of our knowledge, this is one of the first work that
leverages and studies the relationship between pain level and
pain site from the multimodal behavior perspective. In addi-
tion, we will continue to advance the technical aspect of our
network architecture with explicit loss constraint embedded
into the shared soft layer and task-specific encoder structure
to improve further the recognition rate, and further analyze
the soft layer ordering weights to bring additional insights to
the different pain-related neurobiological mechanism and its
relationship to the vocal and facial expressions.
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